package xpath import ( "bytes" "errors" "fmt" "strconv" "unicode" ) // A XPath expression token type. type itemType int const ( itemComma itemType = iota // ',' itemSlash // '/' itemAt // '@' itemDot // '.' itemLParens // '(' itemRParens // ')' itemLBracket // '[' itemRBracket // ']' itemStar // '*' itemPlus // '+' itemMinus // '-' itemEq // '=' itemLt // '<' itemGt // '>' itemBang // '!' itemDollar // '$' itemApos // '\'' itemQuote // '"' itemUnion // '|' itemNe // '!=' itemLe // '<=' itemGe // '>=' itemAnd // '&&' itemOr // '||' itemDotDot // '..' itemSlashSlash // '//' itemName // XML Name itemString // Quoted string constant itemNumber // Number constant itemAxe // Axe (like child::) itemEOF // END ) // A node is an XPath node in the parse tree. type node interface { Type() nodeType } // nodeType identifies the type of a parse tree node. type nodeType int func (t nodeType) Type() nodeType { return t } const ( nodeRoot nodeType = iota nodeAxis nodeFilter nodeFunction nodeOperator nodeVariable nodeConstantOperand nodeGroup ) type parser struct { r *scanner d int namespaces map[string]string } // newOperatorNode returns new operator node OperatorNode. func newOperatorNode(op string, left, right node) node { return &operatorNode{nodeType: nodeOperator, Op: op, Left: left, Right: right} } // newOperand returns new constant operand node OperandNode. func newOperandNode(v interface{}) node { return &operandNode{nodeType: nodeConstantOperand, Val: v} } // newAxisNode returns new axis node AxisNode. func newAxisNode(axeTyp, localName, prefix, prop string, n node, opts ...func(p *axisNode)) node { a := axisNode{ nodeType: nodeAxis, LocalName: localName, Prefix: prefix, AxeType: axeTyp, Prop: prop, Input: n, } for _, o := range opts { o(&a) } return &a } // newVariableNode returns new variable node VariableNode. func newVariableNode(prefix, name string) node { return &variableNode{nodeType: nodeVariable, Name: name, Prefix: prefix} } // newFilterNode returns a new filter node FilterNode. func newFilterNode(n, m node) node { return &filterNode{nodeType: nodeFilter, Input: n, Condition: m} } func newGroupNode(n node) node { return &groupNode{nodeType: nodeGroup, Input: n} } // newRootNode returns a root node. func newRootNode(s string) node { return &rootNode{nodeType: nodeRoot, slash: s} } // newFunctionNode returns function call node. func newFunctionNode(name, prefix string, args []node) node { return &functionNode{nodeType: nodeFunction, Prefix: prefix, FuncName: name, Args: args} } // testOp reports whether current item name is an operand op. func testOp(r *scanner, op string) bool { return r.typ == itemName && r.prefix == "" && r.name == op } func isPrimaryExpr(r *scanner) bool { switch r.typ { case itemString, itemNumber, itemDollar, itemLParens: return true case itemName: return r.canBeFunc && !isNodeType(r) } return false } func isNodeType(r *scanner) bool { switch r.name { case "node", "text", "processing-instruction", "comment": return r.prefix == "" } return false } func isStep(item itemType) bool { switch item { case itemDot, itemDotDot, itemAt, itemAxe, itemStar, itemName: return true } return false } func checkItem(r *scanner, typ itemType) { if r.typ != typ { panic(fmt.Sprintf("%s has an invalid token", r.text)) } } // parseExpression parsing the expression with input node n. func (p *parser) parseExpression(n node) node { if p.d = p.d + 1; p.d > 200 { panic("the xpath query is too complex(depth > 200)") } n = p.parseOrExpr(n) p.d-- return n } // next scanning next item on forward. func (p *parser) next() bool { return p.r.nextItem() } func (p *parser) skipItem(typ itemType) { checkItem(p.r, typ) p.next() } // OrExpr ::= AndExpr | OrExpr 'or' AndExpr func (p *parser) parseOrExpr(n node) node { opnd := p.parseAndExpr(n) for { if !testOp(p.r, "or") { break } p.next() opnd = newOperatorNode("or", opnd, p.parseAndExpr(n)) } return opnd } // AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr func (p *parser) parseAndExpr(n node) node { opnd := p.parseEqualityExpr(n) for { if !testOp(p.r, "and") { break } p.next() opnd = newOperatorNode("and", opnd, p.parseEqualityExpr(n)) } return opnd } // EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr | EqualityExpr '!=' RelationalExpr func (p *parser) parseEqualityExpr(n node) node { opnd := p.parseRelationalExpr(n) Loop: for { var op string switch p.r.typ { case itemEq: op = "=" case itemNe: op = "!=" default: break Loop } p.next() opnd = newOperatorNode(op, opnd, p.parseRelationalExpr(n)) } return opnd } // RelationalExpr ::= AdditiveExpr | RelationalExpr '<' AdditiveExpr | RelationalExpr '>' AdditiveExpr // | RelationalExpr '<=' AdditiveExpr // | RelationalExpr '>=' AdditiveExpr func (p *parser) parseRelationalExpr(n node) node { opnd := p.parseAdditiveExpr(n) Loop: for { var op string switch p.r.typ { case itemLt: op = "<" case itemGt: op = ">" case itemLe: op = "<=" case itemGe: op = ">=" default: break Loop } p.next() opnd = newOperatorNode(op, opnd, p.parseAdditiveExpr(n)) } return opnd } // AdditiveExpr ::= MultiplicativeExpr | AdditiveExpr '+' MultiplicativeExpr | AdditiveExpr '-' MultiplicativeExpr func (p *parser) parseAdditiveExpr(n node) node { opnd := p.parseMultiplicativeExpr(n) Loop: for { var op string switch p.r.typ { case itemPlus: op = "+" case itemMinus: op = "-" default: break Loop } p.next() opnd = newOperatorNode(op, opnd, p.parseMultiplicativeExpr(n)) } return opnd } // MultiplicativeExpr ::= UnaryExpr | MultiplicativeExpr MultiplyOperator(*) UnaryExpr // | MultiplicativeExpr 'div' UnaryExpr | MultiplicativeExpr 'mod' UnaryExpr func (p *parser) parseMultiplicativeExpr(n node) node { opnd := p.parseUnaryExpr(n) Loop: for { var op string if p.r.typ == itemStar { op = "*" } else if testOp(p.r, "div") || testOp(p.r, "mod") { op = p.r.name } else { break Loop } p.next() opnd = newOperatorNode(op, opnd, p.parseUnaryExpr(n)) } return opnd } // UnaryExpr ::= UnionExpr | '-' UnaryExpr func (p *parser) parseUnaryExpr(n node) node { minus := false // ignore '-' sequence for p.r.typ == itemMinus { p.next() minus = !minus } opnd := p.parseUnionExpr(n) if minus { opnd = newOperatorNode("*", opnd, newOperandNode(float64(-1))) } return opnd } // UnionExpr ::= PathExpr | UnionExpr '|' PathExpr func (p *parser) parseUnionExpr(n node) node { opnd := p.parsePathExpr(n) Loop: for { if p.r.typ != itemUnion { break Loop } p.next() opnd2 := p.parsePathExpr(n) // Checking the node type that must be is node set type? opnd = newOperatorNode("|", opnd, opnd2) } return opnd } // PathExpr ::= LocationPath | FilterExpr | FilterExpr '/' RelativeLocationPath | FilterExpr '//' RelativeLocationPath func (p *parser) parsePathExpr(n node) node { var opnd node if isPrimaryExpr(p.r) { opnd = p.parseFilterExpr(n) switch p.r.typ { case itemSlash: p.next() opnd = p.parseRelativeLocationPath(opnd) case itemSlashSlash: p.next() opnd = p.parseRelativeLocationPath(newAxisNode("descendant-or-self", "", "", "", opnd)) } } else { opnd = p.parseLocationPath(nil) } return opnd } // FilterExpr ::= PrimaryExpr | FilterExpr Predicate func (p *parser) parseFilterExpr(n node) node { opnd := p.parsePrimaryExpr(n) if p.r.typ == itemLBracket { opnd = newFilterNode(opnd, p.parsePredicate(opnd)) } return opnd } // Predicate ::= '[' PredicateExpr ']' func (p *parser) parsePredicate(n node) node { p.skipItem(itemLBracket) opnd := p.parseExpression(n) p.skipItem(itemRBracket) return opnd } // LocationPath ::= RelativeLocationPath | AbsoluteLocationPath func (p *parser) parseLocationPath(n node) (opnd node) { switch p.r.typ { case itemSlash: p.next() opnd = newRootNode("/") if isStep(p.r.typ) { opnd = p.parseRelativeLocationPath(opnd) // ?? child:: or self ?? } case itemSlashSlash: p.next() opnd = newRootNode("//") opnd = p.parseRelativeLocationPath(newAxisNode("descendant-or-self", "", "", "", opnd)) default: opnd = p.parseRelativeLocationPath(n) } return opnd } // RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | AbbreviatedRelativeLocationPath func (p *parser) parseRelativeLocationPath(n node) node { opnd := n Loop: for { opnd = p.parseStep(opnd) switch p.r.typ { case itemSlashSlash: p.next() opnd = newAxisNode("descendant-or-self", "", "", "", opnd) case itemSlash: p.next() default: break Loop } } return opnd } // Step ::= AxisSpecifier NodeTest Predicate* | AbbreviatedStep func (p *parser) parseStep(n node) (opnd node) { axeTyp := "child" // default axes value. if p.r.typ == itemDot || p.r.typ == itemDotDot { if p.r.typ == itemDot { axeTyp = "self" } else { axeTyp = "parent" } p.next() opnd = newAxisNode(axeTyp, "", "", "", n) if p.r.typ != itemLBracket { return opnd } } else { switch p.r.typ { case itemAt: p.next() axeTyp = "attribute" case itemAxe: axeTyp = p.r.name p.next() case itemLParens: return p.parseSequence(n) } opnd = p.parseNodeTest(n, axeTyp) } for p.r.typ == itemLBracket { opnd = newFilterNode(opnd, p.parsePredicate(opnd)) } return opnd } // Expr ::= '(' Step ("," Step)* ')' func (p *parser) parseSequence(n node) (opnd node) { p.skipItem(itemLParens) opnd = p.parseStep(n) for { if p.r.typ != itemComma { break } p.next() opnd2 := p.parseStep(n) opnd = newOperatorNode("|", opnd, opnd2) } p.skipItem(itemRParens) return opnd } // NodeTest ::= NameTest | nodeType '(' ')' | 'processing-instruction' '(' Literal ')' func (p *parser) parseNodeTest(n node, axeTyp string) (opnd node) { switch p.r.typ { case itemName: if p.r.canBeFunc && isNodeType(p.r) { var prop string switch p.r.name { case "comment", "text", "processing-instruction", "node": prop = p.r.name } var name string p.next() p.skipItem(itemLParens) if prop == "processing-instruction" && p.r.typ != itemRParens { checkItem(p.r, itemString) name = p.r.strval p.next() } p.skipItem(itemRParens) opnd = newAxisNode(axeTyp, name, "", prop, n) } else { prefix := p.r.prefix name := p.r.name p.next() if p.r.name == "*" { name = "" } opnd = newAxisNode(axeTyp, name, prefix, "", n, func(a *axisNode) { if prefix != "" && p.namespaces != nil { if ns, ok := p.namespaces[prefix]; ok { a.hasNamespaceURI = true a.namespaceURI = ns } else { panic(fmt.Sprintf("prefix %s not defined.", prefix)) } } }) } case itemStar: opnd = newAxisNode(axeTyp, "", "", "", n) p.next() default: panic("expression must evaluate to a node-set") } return opnd } // PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall func (p *parser) parsePrimaryExpr(n node) (opnd node) { switch p.r.typ { case itemString: opnd = newOperandNode(p.r.strval) p.next() case itemNumber: opnd = newOperandNode(p.r.numval) p.next() case itemDollar: p.next() checkItem(p.r, itemName) opnd = newVariableNode(p.r.prefix, p.r.name) p.next() case itemLParens: p.next() opnd = p.parseExpression(n) if opnd.Type() != nodeConstantOperand { opnd = newGroupNode(opnd) } p.skipItem(itemRParens) case itemName: if p.r.canBeFunc && !isNodeType(p.r) { opnd = p.parseMethod(nil) } } return opnd } // FunctionCall ::= FunctionName '(' ( Argument ( ',' Argument )* )? ')' func (p *parser) parseMethod(n node) node { var args []node name := p.r.name prefix := p.r.prefix p.skipItem(itemName) p.skipItem(itemLParens) if p.r.typ != itemRParens { for { args = append(args, p.parseExpression(n)) if p.r.typ == itemRParens { break } p.skipItem(itemComma) } } p.skipItem(itemRParens) return newFunctionNode(name, prefix, args) } // Parse parsing the XPath express string expr and returns a tree node. func parse(expr string, namespaces map[string]string) node { r := &scanner{text: expr} r.nextChar() r.nextItem() p := &parser{r: r, namespaces: namespaces} return p.parseExpression(nil) } // rootNode holds a top-level node of tree. type rootNode struct { nodeType slash string } func (r *rootNode) String() string { return r.slash } // operatorNode holds two Nodes operator. type operatorNode struct { nodeType Op string Left, Right node } func (o *operatorNode) String() string { return fmt.Sprintf("%v%s%v", o.Left, o.Op, o.Right) } // axisNode holds a location step. type axisNode struct { nodeType Input node Prop string // node-test name.[comment|text|processing-instruction|node] AxeType string // name of the axes.[attribute|ancestor|child|....] LocalName string // local part name of node. Prefix string // prefix name of node. namespaceURI string // namespace URI of node hasNamespaceURI bool // if namespace URI is set (can be "") } func (a *axisNode) String() string { var b bytes.Buffer if a.AxeType != "" { b.Write([]byte(a.AxeType + "::")) } if a.Prefix != "" { b.Write([]byte(a.Prefix + ":")) } b.Write([]byte(a.LocalName)) if a.Prop != "" { b.Write([]byte("/" + a.Prop + "()")) } return b.String() } // operandNode holds a constant operand. type operandNode struct { nodeType Val interface{} } func (o *operandNode) String() string { return fmt.Sprintf("%v", o.Val) } // groupNode holds a set of node expression type groupNode struct { nodeType Input node } func (g *groupNode) String() string { return fmt.Sprintf("%s", g.Input) } // filterNode holds a condition filter. type filterNode struct { nodeType Input, Condition node } func (f *filterNode) String() string { return fmt.Sprintf("%s[%s]", f.Input, f.Condition) } // variableNode holds a variable. type variableNode struct { nodeType Name, Prefix string } func (v *variableNode) String() string { if v.Prefix == "" { return v.Name } return fmt.Sprintf("%s:%s", v.Prefix, v.Name) } // functionNode holds a function call. type functionNode struct { nodeType Args []node Prefix string FuncName string // function name } func (f *functionNode) String() string { var b bytes.Buffer // fun(arg1, ..., argn) b.Write([]byte(f.FuncName)) b.Write([]byte("(")) for i, arg := range f.Args { if i > 0 { b.Write([]byte(",")) } b.Write([]byte(fmt.Sprintf("%s", arg))) } b.Write([]byte(")")) return b.String() } type scanner struct { text, name, prefix string pos int curr rune typ itemType strval string // text value at current pos numval float64 // number value at current pos canBeFunc bool } func (s *scanner) nextChar() bool { if s.pos >= len(s.text) { s.curr = rune(0) return false } s.curr = rune(s.text[s.pos]) s.pos++ return true } func (s *scanner) nextItem() bool { s.skipSpace() switch s.curr { case 0: s.typ = itemEOF return false case ',', '@', '(', ')', '|', '*', '[', ']', '+', '-', '=', '#', '$': s.typ = asItemType(s.curr) s.nextChar() case '<': s.typ = itemLt s.nextChar() if s.curr == '=' { s.typ = itemLe s.nextChar() } case '>': s.typ = itemGt s.nextChar() if s.curr == '=' { s.typ = itemGe s.nextChar() } case '!': s.typ = itemBang s.nextChar() if s.curr == '=' { s.typ = itemNe s.nextChar() } case '.': s.typ = itemDot s.nextChar() if s.curr == '.' { s.typ = itemDotDot s.nextChar() } else if isDigit(s.curr) { s.typ = itemNumber s.numval = s.scanFraction() } case '/': s.typ = itemSlash s.nextChar() if s.curr == '/' { s.typ = itemSlashSlash s.nextChar() } case '"', '\'': s.typ = itemString s.strval = s.scanString() default: if isDigit(s.curr) { s.typ = itemNumber s.numval = s.scanNumber() } else if isName(s.curr) { s.typ = itemName s.name = s.scanName() s.prefix = "" // "foo:bar" is one itemem not three because it doesn't allow spaces in between // We should distinct it from "foo::" and need process "foo ::" as well if s.curr == ':' { s.nextChar() // can be "foo:bar" or "foo::" if s.curr == ':' { // "foo::" s.nextChar() s.typ = itemAxe } else { // "foo:*", "foo:bar" or "foo: " s.prefix = s.name if s.curr == '*' { s.nextChar() s.name = "*" } else if isName(s.curr) { s.name = s.scanName() } else { panic(fmt.Sprintf("%s has an invalid qualified name.", s.text)) } } } else { s.skipSpace() if s.curr == ':' { s.nextChar() // it can be "foo ::" or just "foo :" if s.curr == ':' { s.nextChar() s.typ = itemAxe } else { panic(fmt.Sprintf("%s has an invalid qualified name.", s.text)) } } } s.skipSpace() s.canBeFunc = s.curr == '(' } else { panic(fmt.Sprintf("%s has an invalid token.", s.text)) } } return true } func (s *scanner) skipSpace() { Loop: for { if !unicode.IsSpace(s.curr) || !s.nextChar() { break Loop } } } func (s *scanner) scanFraction() float64 { var ( i = s.pos - 2 c = 1 // '.' ) for isDigit(s.curr) { s.nextChar() c++ } v, err := strconv.ParseFloat(s.text[i:i+c], 64) if err != nil { panic(fmt.Errorf("xpath: scanFraction parse float got error: %v", err)) } return v } func (s *scanner) scanNumber() float64 { var ( c int i = s.pos - 1 ) for isDigit(s.curr) { s.nextChar() c++ } if s.curr == '.' { s.nextChar() c++ for isDigit(s.curr) { s.nextChar() c++ } } v, err := strconv.ParseFloat(s.text[i:i+c], 64) if err != nil { panic(fmt.Errorf("xpath: scanNumber parse float got error: %v", err)) } return v } func (s *scanner) scanString() string { var ( c = 0 end = s.curr ) s.nextChar() i := s.pos - 1 for s.curr != end { if !s.nextChar() { panic(errors.New("xpath: scanString got unclosed string")) } c++ } s.nextChar() return s.text[i : i+c] } func (s *scanner) scanName() string { var ( c int i = s.pos - 1 ) for isName(s.curr) { c++ if !s.nextChar() { break } } return s.text[i : i+c] } func isName(r rune) bool { return string(r) != ":" && string(r) != "/" && (unicode.Is(first, r) || unicode.Is(second, r) || string(r) == "*") } func isDigit(r rune) bool { return unicode.IsDigit(r) } func asItemType(r rune) itemType { switch r { case ',': return itemComma case '@': return itemAt case '(': return itemLParens case ')': return itemRParens case '|': return itemUnion case '*': return itemStar case '[': return itemLBracket case ']': return itemRBracket case '+': return itemPlus case '-': return itemMinus case '=': return itemEq case '$': return itemDollar } panic(fmt.Errorf("unknown item: %v", r)) } var first = &unicode.RangeTable{ R16: []unicode.Range16{ {0x003A, 0x003A, 1}, {0x0041, 0x005A, 1}, {0x005F, 0x005F, 1}, {0x0061, 0x007A, 1}, {0x00C0, 0x00D6, 1}, {0x00D8, 0x00F6, 1}, {0x00F8, 0x00FF, 1}, {0x0100, 0x0131, 1}, {0x0134, 0x013E, 1}, {0x0141, 0x0148, 1}, {0x014A, 0x017E, 1}, {0x0180, 0x01C3, 1}, {0x01CD, 0x01F0, 1}, {0x01F4, 0x01F5, 1}, {0x01FA, 0x0217, 1}, {0x0250, 0x02A8, 1}, {0x02BB, 0x02C1, 1}, {0x0386, 0x0386, 1}, {0x0388, 0x038A, 1}, {0x038C, 0x038C, 1}, {0x038E, 0x03A1, 1}, {0x03A3, 0x03CE, 1}, {0x03D0, 0x03D6, 1}, {0x03DA, 0x03E0, 2}, {0x03E2, 0x03F3, 1}, {0x0401, 0x040C, 1}, {0x040E, 0x044F, 1}, {0x0451, 0x045C, 1}, {0x045E, 0x0481, 1}, {0x0490, 0x04C4, 1}, {0x04C7, 0x04C8, 1}, {0x04CB, 0x04CC, 1}, {0x04D0, 0x04EB, 1}, {0x04EE, 0x04F5, 1}, {0x04F8, 0x04F9, 1}, {0x0531, 0x0556, 1}, {0x0559, 0x0559, 1}, {0x0561, 0x0586, 1}, {0x05D0, 0x05EA, 1}, {0x05F0, 0x05F2, 1}, {0x0621, 0x063A, 1}, {0x0641, 0x064A, 1}, {0x0671, 0x06B7, 1}, {0x06BA, 0x06BE, 1}, {0x06C0, 0x06CE, 1}, {0x06D0, 0x06D3, 1}, {0x06D5, 0x06D5, 1}, {0x06E5, 0x06E6, 1}, {0x0905, 0x0939, 1}, {0x093D, 0x093D, 1}, {0x0958, 0x0961, 1}, {0x0985, 0x098C, 1}, {0x098F, 0x0990, 1}, {0x0993, 0x09A8, 1}, {0x09AA, 0x09B0, 1}, {0x09B2, 0x09B2, 1}, {0x09B6, 0x09B9, 1}, {0x09DC, 0x09DD, 1}, {0x09DF, 0x09E1, 1}, {0x09F0, 0x09F1, 1}, {0x0A05, 0x0A0A, 1}, {0x0A0F, 0x0A10, 1}, {0x0A13, 0x0A28, 1}, {0x0A2A, 0x0A30, 1}, {0x0A32, 0x0A33, 1}, {0x0A35, 0x0A36, 1}, {0x0A38, 0x0A39, 1}, {0x0A59, 0x0A5C, 1}, {0x0A5E, 0x0A5E, 1}, {0x0A72, 0x0A74, 1}, {0x0A85, 0x0A8B, 1}, {0x0A8D, 0x0A8D, 1}, {0x0A8F, 0x0A91, 1}, {0x0A93, 0x0AA8, 1}, {0x0AAA, 0x0AB0, 1}, {0x0AB2, 0x0AB3, 1}, {0x0AB5, 0x0AB9, 1}, {0x0ABD, 0x0AE0, 0x23}, {0x0B05, 0x0B0C, 1}, {0x0B0F, 0x0B10, 1}, {0x0B13, 0x0B28, 1}, {0x0B2A, 0x0B30, 1}, {0x0B32, 0x0B33, 1}, {0x0B36, 0x0B39, 1}, {0x0B3D, 0x0B3D, 1}, {0x0B5C, 0x0B5D, 1}, {0x0B5F, 0x0B61, 1}, {0x0B85, 0x0B8A, 1}, {0x0B8E, 0x0B90, 1}, {0x0B92, 0x0B95, 1}, {0x0B99, 0x0B9A, 1}, {0x0B9C, 0x0B9C, 1}, {0x0B9E, 0x0B9F, 1}, {0x0BA3, 0x0BA4, 1}, {0x0BA8, 0x0BAA, 1}, {0x0BAE, 0x0BB5, 1}, {0x0BB7, 0x0BB9, 1}, {0x0C05, 0x0C0C, 1}, {0x0C0E, 0x0C10, 1}, {0x0C12, 0x0C28, 1}, {0x0C2A, 0x0C33, 1}, {0x0C35, 0x0C39, 1}, {0x0C60, 0x0C61, 1}, {0x0C85, 0x0C8C, 1}, {0x0C8E, 0x0C90, 1}, {0x0C92, 0x0CA8, 1}, {0x0CAA, 0x0CB3, 1}, {0x0CB5, 0x0CB9, 1}, {0x0CDE, 0x0CDE, 1}, {0x0CE0, 0x0CE1, 1}, {0x0D05, 0x0D0C, 1}, {0x0D0E, 0x0D10, 1}, {0x0D12, 0x0D28, 1}, {0x0D2A, 0x0D39, 1}, {0x0D60, 0x0D61, 1}, {0x0E01, 0x0E2E, 1}, {0x0E30, 0x0E30, 1}, {0x0E32, 0x0E33, 1}, {0x0E40, 0x0E45, 1}, {0x0E81, 0x0E82, 1}, {0x0E84, 0x0E84, 1}, {0x0E87, 0x0E88, 1}, {0x0E8A, 0x0E8D, 3}, {0x0E94, 0x0E97, 1}, {0x0E99, 0x0E9F, 1}, {0x0EA1, 0x0EA3, 1}, {0x0EA5, 0x0EA7, 2}, {0x0EAA, 0x0EAB, 1}, {0x0EAD, 0x0EAE, 1}, {0x0EB0, 0x0EB0, 1}, {0x0EB2, 0x0EB3, 1}, {0x0EBD, 0x0EBD, 1}, {0x0EC0, 0x0EC4, 1}, {0x0F40, 0x0F47, 1}, {0x0F49, 0x0F69, 1}, {0x10A0, 0x10C5, 1}, {0x10D0, 0x10F6, 1}, {0x1100, 0x1100, 1}, {0x1102, 0x1103, 1}, {0x1105, 0x1107, 1}, {0x1109, 0x1109, 1}, {0x110B, 0x110C, 1}, {0x110E, 0x1112, 1}, {0x113C, 0x1140, 2}, {0x114C, 0x1150, 2}, {0x1154, 0x1155, 1}, {0x1159, 0x1159, 1}, {0x115F, 0x1161, 1}, {0x1163, 0x1169, 2}, {0x116D, 0x116E, 1}, {0x1172, 0x1173, 1}, {0x1175, 0x119E, 0x119E - 0x1175}, {0x11A8, 0x11AB, 0x11AB - 0x11A8}, {0x11AE, 0x11AF, 1}, {0x11B7, 0x11B8, 1}, {0x11BA, 0x11BA, 1}, {0x11BC, 0x11C2, 1}, {0x11EB, 0x11F0, 0x11F0 - 0x11EB}, {0x11F9, 0x11F9, 1}, {0x1E00, 0x1E9B, 1}, {0x1EA0, 0x1EF9, 1}, {0x1F00, 0x1F15, 1}, {0x1F18, 0x1F1D, 1}, {0x1F20, 0x1F45, 1}, {0x1F48, 0x1F4D, 1}, {0x1F50, 0x1F57, 1}, {0x1F59, 0x1F5B, 0x1F5B - 0x1F59}, {0x1F5D, 0x1F5D, 1}, {0x1F5F, 0x1F7D, 1}, {0x1F80, 0x1FB4, 1}, {0x1FB6, 0x1FBC, 1}, {0x1FBE, 0x1FBE, 1}, {0x1FC2, 0x1FC4, 1}, {0x1FC6, 0x1FCC, 1}, {0x1FD0, 0x1FD3, 1}, {0x1FD6, 0x1FDB, 1}, {0x1FE0, 0x1FEC, 1}, {0x1FF2, 0x1FF4, 1}, {0x1FF6, 0x1FFC, 1}, {0x2126, 0x2126, 1}, {0x212A, 0x212B, 1}, {0x212E, 0x212E, 1}, {0x2180, 0x2182, 1}, {0x3007, 0x3007, 1}, {0x3021, 0x3029, 1}, {0x3041, 0x3094, 1}, {0x30A1, 0x30FA, 1}, {0x3105, 0x312C, 1}, {0x4E00, 0x9FA5, 1}, {0xAC00, 0xD7A3, 1}, }, } var second = &unicode.RangeTable{ R16: []unicode.Range16{ {0x002D, 0x002E, 1}, {0x0030, 0x0039, 1}, {0x00B7, 0x00B7, 1}, {0x02D0, 0x02D1, 1}, {0x0300, 0x0345, 1}, {0x0360, 0x0361, 1}, {0x0387, 0x0387, 1}, {0x0483, 0x0486, 1}, {0x0591, 0x05A1, 1}, {0x05A3, 0x05B9, 1}, {0x05BB, 0x05BD, 1}, {0x05BF, 0x05BF, 1}, {0x05C1, 0x05C2, 1}, {0x05C4, 0x0640, 0x0640 - 0x05C4}, {0x064B, 0x0652, 1}, {0x0660, 0x0669, 1}, {0x0670, 0x0670, 1}, {0x06D6, 0x06DC, 1}, {0x06DD, 0x06DF, 1}, {0x06E0, 0x06E4, 1}, {0x06E7, 0x06E8, 1}, {0x06EA, 0x06ED, 1}, {0x06F0, 0x06F9, 1}, {0x0901, 0x0903, 1}, {0x093C, 0x093C, 1}, {0x093E, 0x094C, 1}, {0x094D, 0x094D, 1}, {0x0951, 0x0954, 1}, {0x0962, 0x0963, 1}, {0x0966, 0x096F, 1}, {0x0981, 0x0983, 1}, {0x09BC, 0x09BC, 1}, {0x09BE, 0x09BF, 1}, {0x09C0, 0x09C4, 1}, {0x09C7, 0x09C8, 1}, {0x09CB, 0x09CD, 1}, {0x09D7, 0x09D7, 1}, {0x09E2, 0x09E3, 1}, {0x09E6, 0x09EF, 1}, {0x0A02, 0x0A3C, 0x3A}, {0x0A3E, 0x0A3F, 1}, {0x0A40, 0x0A42, 1}, {0x0A47, 0x0A48, 1}, {0x0A4B, 0x0A4D, 1}, {0x0A66, 0x0A6F, 1}, {0x0A70, 0x0A71, 1}, {0x0A81, 0x0A83, 1}, {0x0ABC, 0x0ABC, 1}, {0x0ABE, 0x0AC5, 1}, {0x0AC7, 0x0AC9, 1}, {0x0ACB, 0x0ACD, 1}, {0x0AE6, 0x0AEF, 1}, {0x0B01, 0x0B03, 1}, {0x0B3C, 0x0B3C, 1}, {0x0B3E, 0x0B43, 1}, {0x0B47, 0x0B48, 1}, {0x0B4B, 0x0B4D, 1}, {0x0B56, 0x0B57, 1}, {0x0B66, 0x0B6F, 1}, {0x0B82, 0x0B83, 1}, {0x0BBE, 0x0BC2, 1}, {0x0BC6, 0x0BC8, 1}, {0x0BCA, 0x0BCD, 1}, {0x0BD7, 0x0BD7, 1}, {0x0BE7, 0x0BEF, 1}, {0x0C01, 0x0C03, 1}, {0x0C3E, 0x0C44, 1}, {0x0C46, 0x0C48, 1}, {0x0C4A, 0x0C4D, 1}, {0x0C55, 0x0C56, 1}, {0x0C66, 0x0C6F, 1}, {0x0C82, 0x0C83, 1}, {0x0CBE, 0x0CC4, 1}, {0x0CC6, 0x0CC8, 1}, {0x0CCA, 0x0CCD, 1}, {0x0CD5, 0x0CD6, 1}, {0x0CE6, 0x0CEF, 1}, {0x0D02, 0x0D03, 1}, {0x0D3E, 0x0D43, 1}, {0x0D46, 0x0D48, 1}, {0x0D4A, 0x0D4D, 1}, {0x0D57, 0x0D57, 1}, {0x0D66, 0x0D6F, 1}, {0x0E31, 0x0E31, 1}, {0x0E34, 0x0E3A, 1}, {0x0E46, 0x0E46, 1}, {0x0E47, 0x0E4E, 1}, {0x0E50, 0x0E59, 1}, {0x0EB1, 0x0EB1, 1}, {0x0EB4, 0x0EB9, 1}, {0x0EBB, 0x0EBC, 1}, {0x0EC6, 0x0EC6, 1}, {0x0EC8, 0x0ECD, 1}, {0x0ED0, 0x0ED9, 1}, {0x0F18, 0x0F19, 1}, {0x0F20, 0x0F29, 1}, {0x0F35, 0x0F39, 2}, {0x0F3E, 0x0F3F, 1}, {0x0F71, 0x0F84, 1}, {0x0F86, 0x0F8B, 1}, {0x0F90, 0x0F95, 1}, {0x0F97, 0x0F97, 1}, {0x0F99, 0x0FAD, 1}, {0x0FB1, 0x0FB7, 1}, {0x0FB9, 0x0FB9, 1}, {0x20D0, 0x20DC, 1}, {0x20E1, 0x3005, 0x3005 - 0x20E1}, {0x302A, 0x302F, 1}, {0x3031, 0x3035, 1}, {0x3099, 0x309A, 1}, {0x309D, 0x309E, 1}, {0x30FC, 0x30FE, 1}, }, }